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Transverse vibrations of a string moving with time-dependent velocity v(t)
have been investigated. Analytical solutions of the problem are found using the
systematic approach of Lie group theory. Group classification with respect to the
arbitrary velocity function has been performed using a newly developed technique
of equivalence transformations. From the symmetries of the partial differential
equation, the method for deriving exact solutions for the arbitrary velocity case is
shown. Special cases of interest such as constant velocity, constant acceleration,
harmonically varying velocity and exponentially decaying velocity are investigated
in detail. Finally, for a simply supported strip, approximate solutions are presented
for the exponentially decaying and harmonically varying cases.
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1. INTRODUCTION

Transverse vibrations of an axially accelerating string were first investigated by
Miranker [1]. By using co-ordinate transformations, he successfully reduced the
equations of motion into a simpler form. Later, Mote [ 2] presented an approximate
solution for the accelerating string, driven harmonically at one end. He replaced the
variable coefficients by their time-averaged values and investigated stability by
Laplace transform techniques. More recently, Pakdemirli et al. [3] derived the
equations of motion using Hamilton’s principle, solved the problem using Galerkin
discretization and investigated numerically the stability of the system. A
harmonically varying velocity about a zero mean velocity was considered in the
analysis. A similar analysis with constant acceleration-deceleration type velocity
was considered by Pakdemirli and Batan [4]. Wickert [5] considered a general
gyroscopic system and presented an approximate solution for the constantly
accelerating strip as a special example. Pakdemirli and Ulsoy [6] presented an
approximate analytical solution to the problem using the method of multiple
scales, a perturbation technique. The advantage of attacking directly the partial
differential system by perturbations was discussed. A detailed stability analysis was
performed for the special case of harmonically varying velocity about a constant
mean velocity.

In this study, exact analytical solutions of the problem using Lie group theory
have been sought for the first time. Since the axial velocity is an arbitrary function
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of time, a group classification with respect to this function is performed using
equivalence transformations (the technique is developed recently [7-10]). The
classifying relation for velocity as well as the structure of infinitesimals are
determined using a similar method as that given by Yiirlisoy and Pakdemirli [11].
The symmetries of the differential equation are used in two different ways: (1)
canonical co-ordinates are defined and the equation is reduced to a more
convenient form. (2) similarity variables are defined and the equations are
transformed from partial differential equations into ordinary differential equations.
By defining principal co-ordinates, it is possible to transform the equations into
a canonical form for the arbitrary velocity case. This has been performed by
employing the symmetries of the differential equation. Special cases of velocity such
as constant velocity, constant acceleration, harmonic variation and exponentially
decaying velocity are considered and similarity solutions are presented for
each case.

2. LIE GROUP THEORY AND EQUIVALENCE TRANSFORMATIONS

Lie group theory is a powerful tool for tackling linear and non-linear differential
equations. Particularly for the non-linear problems, the method presents
a systematic and unified approach for finding exact analytical solutions.
Mathematically, Lie group is a special group which is a point transformation in the
space of independent and dependent variables. By calculating the point
transformations particular to the given differential equation, exact analytical
solutions may be produced in a number of ways: (1) from a known analytical
solution (even a trivial solution), using the transformations, another non-trivial
solution can be found; (2) similarity solutions (group-invariant solutions) can be
constructed; and (3) by defining optimal co-ordinates, the partial differential
equation can be reduced to a simpler form.

For partial differential equtions, by defining similarity variable and functions, the
independent variables can be reduced by one by using the transformation. For two
independent variables, the gain is greatest and the method transforms the equations
into ordinary differential equations.

Many of the existing analytical solutions of well-known differential equations
arising in mathematical physics are special cases that could be derived from the
general theory.

The theory can be said to transform the equations into an over-determined
system of partial differential equations from which the so-called infinitesimal
generators (related to the point transformations) can be calculated. Usually, the
over-determined system is simple to solve since many separations occur and the
dependence of many variables is removed from the coefficients of infinitesimal
generators.

Once the infinitesimal generators are obtained, as mentioned before, they can be
used in a number of ways:

(1) if one solution is known, another solution can be calculated using the
generators.
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(2) similarity variables and functions may be defined using the generators and
hence reduction in independent variables is possible.

(3) by defining canonical co-ordinates, the partial differential equation can be
transformed into another partial differential equation which has the same
number of independent variables but which is simpler in form.

For partial differential equations, to the best of the authors’ knowledge, this last
technique has not been exploited in the literature. In this work, the last two cases
have been used in search of analytical solutions.

Finally, the general theory may be too complicated to apply for an engineer.
However, some special group transformations (translational transformation,
scaling transformation, spiral transformation, etc.) work for many of the equations
and are easy to calculate. For a simple presentation of the subject, see Pakdemirli
and Yirisoy [12].

The equation of motion for the axially accelerating string or strip (see Figure 1)
has been derived previously [1, 3, 6]:

pA<62y* dv* 0y* N o0 y*

) + (pAv*? — P) oyt _ 0, (1)

%2 T drrox* 7 axrork ox*?

where t* is the time, x* is the spatial co-ordinate, p is the mass density, A4 is the
cross-sectional area, and y* is the transverse displacement of the string. The
equation of motion was derived assuming small displacements, large tension force
P and negligible flexural stiffness. Defining the dimensionless quantities

x=x*/L, y=y*/L, t=(1/L)/(P/pA)r*, v=0v*//(P/pA), 2
the equation of motion reduces to the following form:

0%y dvoy 0%y 5 0
TR UL il Gl

2
=2 =0, 3

where v(t) is the axial time-dependent dimensionless velocity. The divergence
instability occurs when v = 1 and hence v < 1 is chosen in the analysis.
The equivalence generator for the problem can be written as

0 0 0 0
Y=<41(x1, y)& + &a(x, L, y)a +n(x, t, y)ﬁ_y + u(x, t, y, v)%. (4)

Applying the usual Lie Group analysis combined with equivalence transformations
[7-10], after tedious algebra (see Appendix A for some details), one determines the

Figure 1. Axially accelerating string problem.
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infinitesimals
Ei=ax+h(t), E,=at+b, n=cy+dt+e u=dh/dt. (5)

Here a, b, ¢, d and e are constants while h is an arbitrary function of t. The
projection of the above equivalence operator onto the (¢, v) space is

0 0
PZfza‘FH%- (6)

If this projected generator is identically zero (¢, =0, u = 0), one obtains the
principal Lie algebra

Si=h & =0, n=cy+dt+e, (7)

where h is now a constant.
Applying the projected generator in equation (6) to v = v(t),

0 dho
[(at + b)a + E%} [v—v()] =0, (8)
one obtains the classifying relation
do 1 dh
d " arbde ©)
and by integrating
1 dh
v (1) _J T badt' (10)

Since h(t) is an arbitrary function, the classifying relation does not put much
restriction on the form of the velocity function. In the next section, some exact
solutions will be discussed.

3. EXACT SOLUTIONS

The aim here is to produce some exact solutions as examples using the equivalence
infinitesimals (5) and the classifying relation (9). Two different approaches are used.
In the first approach, canonical co-ordinates are defined using the symmetries, and
hence the equation of motion can be reduced to a simpler form. This approach will
be applied to the arbitrary velocity case. In the second approach, a new
independent variable is defined (similarity variable) in terms of the old variables.
Using this transformation, the partial differential equation is transformed into an
ordinary differential equation. This approach is used to produce new solutions for
special velocity function cases.

3.1. ARBITRARY VELOCITY

For arbitrary v(t), exact solutions can be found by transforming the independent
variables x and t to some other variables. The goal would be to simplify the
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equation of motion using optimal (principal) co-ordinates. To integrate the
classifying relation easily, one choice might be to choose a = 0, b = 1 and hence
h(t) = v(t) for simplicity. Optimal co-ordinates are constructed by the equivalent
ordinary differential system

dx dt
o 11
5 g (h
or, substituting the specific choices into equations (5) and then into equation (11),
dx
— =dt 12
o) (12)
from which one optimal co-ordinate can be defined as
t
E=x— J v(t)dt. (13)
Another choice might be a =0, b = 0, h(t) arbitrary
dx dt
—=— 14
ht) O (14
or
T=1 (15)

In terms of the new independent variables ¢ and 7, equation (3) reduces to the
simple wave equation

0%y 0%y

22 _Z 2. 1
ot 02 0 (16
Hence, the solution can be written as
y=F(—1)+F,(+1) (17)

or in terms of the original variables

y(x, t) = F1<x — Jt v(t)dt — t> + F2<x — f v(t)dtr + t). (18)

This transformation was also presented in Miranker [ 1]. However, it is shown here
that the transformation can be derived from Lie group theory and hence
a systematic derivation instead of adhoc methods is utilized.

An alternative derivation of solution (18) might be to choose a =0, b =1,
h(t)=v(t)+ 1 ora=0,b=1, h(t) =v(t) — 1. These choices yield the following
principal co-ordinates:

f=x—ftv(t)dt—t, T=x—ftv(t)dt+t. (19)

Substitution into equation (3) gives

0%y/0E0t =0 (20)
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which produces exactly the same solution in equation (18). Note that, initial and
boundary conditions are not considered in the solutions since different conditions
might be imposed on the differential equation. The aim here is to produce the exact
solutions of the partial differential equation in a systematic way.

3.2. CONSTANT VELOCITY

When velocity is constant, from the classifying relation (9), i is a constant and the
infinitesimals are

Ei=ax+h Ey=at+b, n=cy+dt+e. 21)

The constant velocity equation admits six finite parameter Lie group
transformations. Many different solutions can be produced using the symmetries.
One choice might be to choose a = d = ¢ = 0 while other parameters remaining
arbitrary. This will finally lead to a similarity solution

y=certh, (22)

where « and f are arbitrary constants defined using the parameters b, ¢ and h. The
above solution is the classical solution given for the constant velocity string
problem. Applying the approriate boundary conditions (i.e., simply supported end
conditions), solutions given at the first order of approximation in reference [6] can
be retrieved. This solution, satisfying the boundary conditions, will be given in
Section 4.

Another choice might be to take parameter a arbitrary while all other
parameters being zero, yielding the similarity variable and function.

S=x/t, y=f(&) (23)
Substituting the new variables into the original equation, one obtains an ordinary

differential equation for f(&). Solving for f(&), and returning to the original
variables, one finally obtains

ﬂ&nzcm§}%§%§ (24)
3.3. CONSTANT ACCELERATION
If one assumes a constant acceleration with
v = at. (25)
then
h(t) = Y oat* + abt + k (26)

from the classifying relation. The infinitesimals take the form
& =ax + Saat? + abt + k,
Ey=at+b, (27)
n=cy+dt+e.
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The constant acceleration equation admits again six finite parameter Lie group
transformations. If we use parameter b while all other parameters being zero, the
solution is

Y0 t) = ci(x —3ar®) + e, (28)
and if we use parameter a only, the similarity solution is
X —dat? —t

x,t)=c,In
v =c X — ot +t

+cs. (29)

If we choose b = ¢, and taking all other parameters as zero, the solution is
y(X, If) — [Clexf(l/Z)m2 + cye —(x—(l/z)octl)] . (30)

Using different combinations of the parameters, other solutions may be produced
and since the equation is linear, combination of the solutions is also a solution.

3.4, HARMONIC VARIATION
For a harmonically fluctuating velocity about a mean velocity, one writes
v(t) = vy + vy sin wt. (31)

The specific forms of the infinitesimals are
: 1 .
& =ax + av, tsmcot—i—;cosa)t + bv; sinwt + k,

ézzat‘f‘b,
n=cy+dt+e. (32)

One choice of parameters might be to take b and ¢ as arbitrary and all other
parameters as zero. For this specific case, the similarity variable and function is

F=x+ %COS ot,  y=e'f(&), (33)

where y = ¢/b. Substituting the variables into the original equation, one obtains the
solution

y(x,t) =¢€"| ciexp 7 x+ﬁcosa)t + c,exp / x+ﬁcosa)t .
1 + vy w 1 —v, 10)

(34)

Other solutions may be found using the combinations of six parameter Lie group
of transformations. To satisfy the appropriate initial and boundary conditions,
superposition of different solutions may be considered.

3.5. EXPONENTIAL DECAY

For this case, the string starts from rest and approaches a constant velocity in an
exponentially decaying manner

o(t) = vo(1 — e~ *). (35)
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Substituting this function into the classifying relation (9) and then the result for h(t)
into the infinitesimals given in equation (5), one finally obtains

1
1= a[x — voe“[<t +&>} — bvge ¥ + k,

&, =at + b, (36)
n=cy+dt+e.

As in the previous case, choosing b and c¢ as arbitrary, and all others as zero, one
finally obtains the solution

— abt _ﬂ @—ut ﬁ _@ — ot
y(x,t)—e’}[clexp<l+vo<x—ae >>+czexp<1_vo<x ol >>}

If f < 0 or a pure imaginary number, for finite x, the solution is stable or at least
bounded in time.

4. A BOUNDARY VALUE PROBLEM

As shown in the preceeding sections, by using Lie group theory, many exact
solutions can be found in a systematic way. The problem arises when those exact
solutions are required to satisfy some specific boundary conditions. Many of the
solutions may not be appropriate for a given boundary value problem.

For non-linear problems, an invariant solution of a differential equation admits
the given boundary conditions if and only if the boundaries and the boundary
conditions also remain invariant under the same transformation [13]. This puts
severe restrictions for the set of suitable solutions, sometimes even making all
possible solutions inappropriate. For linear problems, however, the restriction is
not as severe as in the case of non-linear problems.

In string vibrations, for finite length, one common choice is to use simply
supported end conditions

y(0,t) =y(l,1)=0. (38)

Substituting equation (22) into equation (3), imposing the boundary conditions (38),
one finally obtains the solution

y(x,t) = Ccos[nn(l — v*)t + nnvx + 0] sinnnx. (39)

Although for the constant velocity case, the exact solution presented above is
available, for variable velocity, it is hard to satisfy the boundary conditions using
exact solutions. Hence, the boundary conditions would need to be satisfied
approximately (i.e. the O(1) term satisfies but the O(e) term which is very small, does
not satisfy).

Assuming the harmonic variations to be small,

v(t) = vy + &by sin ot (40)
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and substituting v; = v, into solution (34), expanding for small ¢, and imposing the
boundary conditions (38) to O(1) solution, one finally obtains the approximate
solution

y(x, 1) = C{cos[nrn(l — v§)t + nmvyx + 0] sinnnx
+ nnvy /o cos wt(cos nmx cos[nn(l — v3)t + nnvgx + 0]
— vpsinnnx sin [nn(1 — v§)t + nrvyx + 0]}. (41)

C and 0 are arbitrary constants which can be determined by the initial conditions.
The first term is the usual constant velocity solution and the second term is the
correction due to variation in velocity. Three-dimensional plots of equation (41) are
given for the first and second modes in Figures 2 and 3 respectively. The solution
presented here is the non-resonant solution where there are no principal parametric
resonances or combination type resonances. In References [3, 6] the stability of
solutions rather than the solutions are investigated in detail. In reference [3], the
numerical stability and in reference [6], approximate analytical stability are
treated.

For exponentially decaying solutions, by choosing vy/o to be small enough
(i.e. O(¢)) and proceeding in a similar way, the solution satisfying approximately the

Figure 2. First-mode approximate solution for the harmonically varying velocity case (n =1,
vo=08,1v; =004, 0=2,C=1,0=0).
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Figure 3. Second-mode approximate solution for the harmonically varying velocity case (n = 2,
vo=080v,=004, 0=2,C=1,0=0)

same boundary conditions would be
y(x, t) = C{cos[nn(l — v3)t + nnvex + 0] sinnmx

[
— nn=e ~*(cos nmx cos [nm(l — v3)t + nmvgx + 6]
o

— vosinnux sin[nn(l — vd)t + nmvex + 07}, (42)

Again, the first two modes of the solutions are plotted in Figures 4 and 5.
Exponentially decaying velocity has not been treated previously in the literature.

5. CONCLUDING REMARKS

Group classification has been performed for the first time for an axially
accelerating string problem. Lie group theory combined with equivalence
transformations are used for determining the classifying relation for the arbitrary
velocity function. Special cases such as arbitrary velocity, constant velocity,
constant acceleration, harmonic velocity and exponentially decaying velocity are
treated and solutions are constructed for the cases. The symmetries of the equations
are used in defining the similarity variables and similarity functions and hence
determining the similarity solutions. Alternatively, the symmetries may be used to
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0

Figure 4. First-mode approximate solution for the exponentially decaying velocity case (n = 1,
vo=04,0=10,C=1,0=0).

0

1

Figure 5. Second-mode approximate solution for the harmonically varying velocity case (n = 2,
vo=04,0=10,C=1,0=0).



740 E. OZKAYA AND M. PAKDEMIRLI

transform the equation into a canonical form from which solutions can be written
with ease.

Although the aim of the work is to produce analytical solutions of the partial
differential equation in a systematic way, a specific boundary value problem is also
considered and solutions approximately satisfying the boundary value problem are
given.
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APPENDIX A
The following variables are first defined:
dy 0%y 0%y 0%y
Y1 =y’ Y11 =2 Y12 = axor’ Va2 =22
(A1)
ov ov v

U1=a: UZ=Ea Us—a—y-
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In terms of these variables, the equation of motion (3) take the form

Va2 4 02yy 4 20y15 + (v — 1)y =0,

(A2)
vy =0, vy3=0.
The prolongation of equivalence operator (4) to higher order variables read
0 0
Y =¢i(xt, y) Lt alet y) [t y) =+ plx 1y, v)
ady ov
0 0
+ nl(xa ta Y, V1, yZ)a_yl + :LLl(xa ta Y, 0,0y, U3, 03)5_1)1
0 0
+ /’LZ(xa t) Y, U1, U2, 03)_ + 1u3(xa ta Y, U, Vg, Uy, U3)_
0v, 0vs
: (A3)
+ nll(xa t, Vs V1, Y2, V115 V12, J’22)a
Y11
0
+n12(xa t3y3y13y27y113y12,y22)6—
Y12
0

+ 22(x, 1, ya)’b)’bhh)’lb}’ﬂ)ﬁ-
22

The general recursion formulae from which #y, uy, w2, Uz, 111, 12, H2 can be
calculated in terms of &4, &,, n and u are given in references [7-9].

Applying this operator (A3) to equations (A2), the invariance conditions are
determined:

=0, u3=0,
N2z + oY1 + 02ny + 2uy12 + 20n12 + 2opyyy + (02 — 1)y, = 0. (A4)

In equation (A4), when necessary, the equivalent of y,, from equation (A2) will be
substituted:

Va2 = — 02y1 — 20912 — (V¥ — D) yq;. (AS5)
The first condition u; = 0 yields
8,u 0¢,
A
ox Pox =0 (A6)
and the second condition u3 = 0 yields
a,u afz
g . A
oy 2y =0 (A7)

The equations can be viewed as a polynomial with respect to v, and hence
separated
au o, 0¢&, op ¢y

7 = - = . A
ox 0x 0 dy 0 Oy =0 (A8)
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Therefore some of the dependencies are removed from the infinitesimals

Ei=81xty), & =2C8(), p=pultv)

(A9)

Now using the last condition in equations (A4) with (A5) when necessary, after
lengthy calculations and separations, the following system of equations are finally

obtained:
o*n o*n o*n
) aa
a2 T P ovar o2
a2’7 5252 62’1
ooy~ o T P aay =

+@* —1) =0,

dtdy  Oxot oxdy

@_{_aﬂ 0¢4

~ 2 T

o ov Ox ’
p02 04 06
ot a T H 0x ’
0 0 0
o _
oy
5251 8277 5251
- b =0
otdy oy*  0xdy
i<

2

b

0,

0%¢ 2 a2’7 *¢,

otdy
Solving this over-determined system gives
&L =ax + h(r),
E,=at + b,
n=cy+dt+e,

_dh
=4

0x?

0261 a:u + 2U< 82’7 a261) + (Uz . 1) <2 627/ . azél

)-o.

(A10)

(A11)
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